IMMOBILISATION OF COPPER (I) OXIDE/ZINC OXIDE NANOPARTICLES ON THE GAS DIFFUSION LAYER FOR CO2 REDUCTION REACTION APPLICATION

Main Article Content

Nor Hafizah Yasin
https://orcid.org/0009-0008-1995-7263
Wan Zaireen Nisa Yahya

Abstract

The electrochemical reduction of carbon dioxide (CO₂RR) represents a promising strategy for CO₂ mitigation, requiring highly efficient catalysts integrated into electrochemical devices to achieve high conversion rates and energy efficiencies for desired products. Establishing a gas diffusion electrode is crucial for practical applications of CO₂ electrochemical reduction reactions (CO₂RR). This study uses the air-spraying method to immobilise nano-catalysts onto a gas diffusion layer (GDL) with exceptional homogeneity. A composite of copper(I) oxide (Cu₂O) and zinc oxide (ZnO) nanoparticles in a 4:1 ratio was deposited onto the GDL. Surface morphology analysis revealed the successful immobilisation of cubic Cu₂O and hexagonal wurtzite ZnO with a uniform distribution, indicating potential improvements in CO₂RR performance. Contact angle measurements were conducted to assess surface hydrophobicity, comparing pristine GDL with Cu₂O/ZnO-based GDL. Although the contact angle on the surface of the Cu₂O/ZnO-based GDL slightly reduced from 143.69° to 134.82°, it maintained its hydrophobic nature. This reduction is attributed to Nafion, a binder in the catalyst ink mixture. The sustained high contact angle is crucial for the CO₂ reduction reaction process. X-ray diffraction (XRD) diffractograms of Cu₂O/ZnO-based GDL were compared with reference Cu₂O, ZnO, and bare GDL. The presence of all essential peaks confirms the successful immobilisation. The air-spraying technique effectively achieved a favourable distribution of active metals.

Downloads

Download data is not yet available.

Article Details

How to Cite
Yasin, N. H. ., & Yahya, W. Z. N. . (2024). IMMOBILISATION OF COPPER (I) OXIDE/ZINC OXIDE NANOPARTICLES ON THE GAS DIFFUSION LAYER FOR CO2 REDUCTION REACTION APPLICATION. Malaysian Journal of Science, 43(Sp1), 8–14. https://doi.org/10.22452/mjs.vol43sp1.2
Section
EACCO2CU2022

References

Ahmad Zuhdi, M. F., Rahman, F. H., Shahjavan, H., Mas’od, M. A., Salihuddin, R. S., Zulkepli, N. A., Alias, A., Jalani, M. Y., & Yiin, T. K. (2021). Feasibility Study of Offshore Hybrid Technology for High CO2 Gas Field Monetization. Proceedings of International Petroleum Technology Conference, March, Virtual.

Albo, J., & Irabien, A. (2016). Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. In Journal of Catalysis 343: 232–239.

Burdyny, T., & Smith, W. A. (2019). CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy and Environmental Science 12(5): 1442–1453.

Chang, Q., Lee, J. H., Liu, Y., Xie, Z., Hwang, S., Marinkovic, N. S., Park, A. H. A., Kattel, S., & Chen, J. G. (2022). Electrochemical CO2Reduction Reaction over Cu Nanoparticles with Tunable Activity and Selectivity Mediated by Functional Groups in Polymeric Binder. JACS Au 2(1): 214–222.

Chen, X., Chen, J., Alghoraibi, N. M., Henckel, D. A., Zhang, R., Nwabara, U. O., Madsen, K. E., Kenis, P. J. A., Zimmerman, S. C., & Gewirth, A. A. (2021). Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nature Catalysis 4(1): 20–27.

Chu, M., Chen, C., Wu, Y., Yan, X., Jia, S., Feng, R., Wu, H., He, M., & Han, B. (2021). Enhanced CO2 electroreduction to ethylene via strong metal-support interaction. Green Energy and Environment 7(4): 792-798.

De Luna, P., Quintero-Bermudez, R., DInh, C. T., Ross, M. B., Bushuyev, O. S., Todorović, P., Regier, T., Kelley, S. O., Yang, P., & Sargent, E. H. (2018). Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nature Catalysis 1(2): 103–110.

Guzman, H., Zammillo, F., Roldan, D., Galleti, C., Russo, N., & Hernandez, S. (2021). Investigation of Gas Diffusion Electrode Systems for the Electrochemical CO2 Conversion. Catalysts 11(4): 482.

Hassan, H., Omar, N. F. N., Jalil, A. A. M. M., Salihuddin, R. S., & Shah, S. S. M. (2018). Gearing toward CCUS for CO2 reduction in Malaysia. Proceedings of Offshore Technology Conference Asia March, Kuala Lumpur.

Hoang, T. T. H., Verma, S., Ma, S., Fister, T. T., Timoshenko, J., Frenkel, A. I., Kenis, P. J. A., & Gewirth, A. A. (2018). Nanoporous Copper-Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol. Journal of the American Chemical Society 140(17): 5791–5797.

Jhong, H. R. Q., Brushett, F. R., & Kenis, P. J. A. (2013). The effects of catalyst layer deposition methodology on electrode performance. Advanced Energy Materials 3(5): 589–599.

Jouny, M., Luc, W., & Jiao, F. (2018). General Techno-Economic Analysis of CO2 Electrolysis Systems. Industrial and Engineering Chemistry Research 57(6): 2165–2177.

Jung, H., Lee, S. Y., Lee, C. W., Cho, M. K., Won, D. H., Kim, C., Oh, H. S., Min, B. K., & Hwang, Y. J. (2019). Electrochemical Fragmentation of Cu 2 O Nanoparticles Enhancing Selective C-C Coupling from CO 2 Reduction Reaction. Journal of the American Chemical Society 141(11): 4624–4633.

Keerthiga, G., & Chetty, R. (2017). Electrochemical Reduction of Carbon Dioxide on Zinc-Modified Copper Electrodes. Journal of The Electrochemical Society 164(4): 164–169.

Kibria, M. G., Edwards, J. P., Gabardo, C. M., Dinh, C. T., Seifitokaldani, A., Sinton, D., & Sargent, E. H. (2019). Electrochemical CO2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. Advanced Materials31(31): 1–24.

Kim, Dahee, Lee, S., Ocon, J. D., Jeong, B., Lee, J. K., & Lee, J. (2015). Insights into an autonomously formed oxygen-evacuated Cu2O electrode for the selective production of C2H4 from CO2. Physical Chemistry Chemical Physics 17(2): 824–830.

Kim, Dohyung, Kley, C. S., Li, Y., & Yang, P. (2017). Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proceedings of the National Academy of Sciences, 15 August, pp. 10560–10565 United States of America.

Kim, J., Choi, W., Park, joon woo, Kim, C., Kim, M., & Song, H. (2019). Branched Copper Oxide Nanoparticles Induce Highly Selective Ethylene Production by Electrochemical Carbon Dioxide Reduction 141(17): 6986-6994.

Lee, M. Y., Park, K. T., Lee, W., Lim, H., Kwon, Y., & Kang, S. (2020). Current achievements and the future direction of electrochemical CO2 reduction: A short review. Critical Reviews in Environmental Science and Technology 50(8): 769–815.

Lee, S., Kim, D., & Lee, J. (2015). Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O-Cu catalyst. Angewandte Chemie - International Edition 54(49): 14701–14705.

Liang, S., Altaf, N., Huang, L., Gao, Y., & Wang, Q. (2020). Electrolytic cell design for electrochemical CO2 reduction. Journal of CO2 Utilization 35: 90–105.

Lin, R., Guo, J., Li, X., Patel, P., & Seifitokaldani, A. (2020). Electrochemical reactors for CO2 conversion. In Catalysts 10(5): .

Mahamuni, P. P., Patil, P. M., Dhanavade, M. J., Badiger, M. V., Shadija, P. G., Lokhande, A. C., & Bohara, R. A. (2019). Using polyol chemistry for their antimicrobial and antibiofilm activity. Biochemistry and Biophysics Reports 17:71–80.

Merino-Garcia, I., Albo, J., & Irabien, A. (2018). Tailoring gas-phase CO2 electroreduction selectivity to hydrocarbons at Cu nanoparticles. Nanotechnology 29(1):014001.

Merino-Garcia, Ivan, Albo, J., Solla-Gullón, J., Montiel, V., & Irabien, A. (2019). Cu oxide/ZnO-based surfaces for a selective ethylene production from gas-phase CO2 electroconversion. Journal of CO2 Utilization 31: 135–142.

Mok, D. H., Li, H., Zhang, G., Lee, C., Jiang, K., & Back, S. (2023). Data-driven discovery of electrocatalysts for CO2 reduction using active motifs-based machine learning. Nature Communications, 14(7303): 1-12.

Mowbray, B. A. W., Dvorak, D. J., Taherimakhsousi, N., & Berlinguette, C. P. (2021). How Catalyst Dispersion Solvents Affect CO2Electrolyzer Gas Diffusion Electrodes. Energy and Fuels 35(23): 19178–19184.

Qiao, J., Liu, Y., Hong, F., & Zhang, J. (2014). A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. In Chemical Society Reviews 43(2): 631-675.

Ramasamy, R.P. (2020). Membrane Electrode Assemblies, pp. 787–805, Elsevier B.V.

Reske, R., Mistry, H., Behafarid, F., Roldan Cuenya, B., & Strasser, P. (2014). Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. Journal of the American Chemical Society 136(19): 6978–6986.

Strijevskaya, A., Yamaguchi, A., Shoji, S., Ueda, S., Hashimoto, A., Wen, Y., Wardhana, A. C., Lee, J. E., Liu, M., Abe, H., & Miyauchi, M. (2023). Nanophase-Separated Copper-Zirconia Composites for Bifunctional Electrochemical CO2 Conversion to Formic Acid. ACS Applied Materials and Interfaces 15(19): 23299–23305.

Tang, Z., Nishiwaki, E., Fritz, K. E., Hanrath, T., & Suntivich, J. (2021). Cu(I) Reducibility Controls Ethylene vs Ethanol Selectivity on (100)-Textured Copper during Pulsed CO2Reduction. ACS Applied Materials and Interfaces 13(12): 14050–14055.

Yang, H., Chuai, H., Meng, Q., Wang, M., Zhang, S., & Ma, X. (2023). Copper-based bimetallic electrocatalysts for CO2 reduction: From mechanism understandings to product regulations. Materials Reports: Energy 3(1): 100174.

Yuan, L., Zeng, S., Zhang, X., Ji, X., & Zhang, S. (2023). Advances and challenges of electrolyzers for large-scale CO2 electroreduction. Materials Reports: Energy 3(1): 100177.

Zhang, J., Luo, W., & Zuttel, A. (2019). Self-supported copper-based gas diffusion electrodes for CO2 electrochemical reduction. Journal of Materials Chemistry A 46: 1–9.