SURFACE PLASMON RESONANCE ANALYSIS FOR BENZENE SENSING MEDIA USING SILVER AND Ta2O5 THIN FILMS
Main Article Content
Abstract
The increasing demand for optical sensors is driven by their wide applications, making surface plasmon resonance (SPR) play a crucial role in this field. In this study, a multilayered thin film consisting of tantalum pentoxide (Ta2O5) and silver (Ag) deposited on a glass prism was used to study SPR. The Ag layer thickness was fixed at 50 nm, while the Ta2O5 layer thickness varied from 0 to 70 nm. The Kretschmann configuration was employed to assess the sensitivity of air and gases with different refractive indices. Therefore, different layer thicknesses along with different wavelengths and angles were investigated. MATLAB software was employed to simulate and analyze SPR with a half-sphere prism to extend the incident angle. The simulation conditions with Fresnel equations were used to calculate the reflectivity and transmittance coefficients for the studied sample. The results revealed that the best output was at a Ta2O5 thickness of 50 nm to get optimal full width at half maximum of 2.4 and sensitivity factor of 162.5. This device works in the visible and infrared regions.
Downloads
Article Details
Transfer of Copyrights
- In the event of publication of the manuscript entitled [INSERT MANUSCRIPT TITLE AND REF NO.] in the Malaysian Journal of Science, I hereby transfer copyrights of the manuscript title, abstract and contents to the Malaysian Journal of Science and the Faculty of Science, University of Malaya (as the publisher) for the full legal term of copyright and any renewals thereof throughout the world in any format, and any media for communication.
Conditions of Publication
- I hereby state that this manuscript to be published is an original work, unpublished in any form prior and I have obtained the necessary permission for the reproduction (or am the owner) of any images, illustrations, tables, charts, figures, maps, photographs and other visual materials of whom the copyrights is owned by a third party.
- This manuscript contains no statements that are contradictory to the relevant local and international laws or that infringes on the rights of others.
- I agree to indemnify the Malaysian Journal of Science and the Faculty of Science, University of Malaya (as the publisher) in the event of any claims that arise in regards to the above conditions and assume full liability on the published manuscript.
Reviewer’s Responsibilities
- Reviewers must treat the manuscripts received for reviewing process as confidential. It must not be shown or discussed with others without the authorization from the editor of MJS.
- Reviewers assigned must not have conflicts of interest with respect to the original work, the authors of the article or the research funding.
- Reviewers should judge or evaluate the manuscripts objective as possible. The feedback from the reviewers should be express clearly with supporting arguments.
- If the assigned reviewer considers themselves not able to complete the review of the manuscript, they must communicate with the editor, so that the manuscript could be sent to another suitable reviewer.
Copyright: Rights of the Author(s)
- Effective 2007, it will become the policy of the Malaysian Journal of Science (published by the Faculty of Science, University of Malaya) to obtain copyrights of all manuscripts published. This is to facilitate:
(a) Protection against copyright infringement of the manuscript through copyright breaches or piracy.
(b) Timely handling of reproduction requests from authorized third parties that are addressed directly to the Faculty of Science, University of Malaya. - As the author, you may publish the fore-mentioned manuscript, whole or any part thereof, provided acknowledgement regarding copyright notice and reference to first publication in the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers) are given.
You may produce copies of your manuscript, whole or any part thereof, for teaching purposes or to be provided, on individual basis, to fellow researchers. - You may include the fore-mentioned manuscript, whole or any part thereof, electronically on a secure network at your affiliated institution, provided acknowledgement regarding copyright notice and reference to first publication in the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers) are given.
- You may include the fore-mentioned manuscript, whole or any part thereof, on the World Wide Web, provided acknowledgement regarding copyright notice and reference to first publication in the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers) are given.
- In the event that your manuscript, whole or any part thereof, has been requested to be reproduced, for any purpose or in any form approved by the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers), you will be informed. It is requested that any changes to your contact details (especially e-mail addresses) are made known.
Copyright: Role and responsibility of the Author(s)
- In the event of the manuscript to be published in the Malaysian Journal of Science contains materials copyrighted to others prior, it is the responsibility of current author(s) to obtain written permission from the copyright owner or owners.
- This written permission should be submitted with the proof-copy of the manuscript to be published in the Malaysian Journal of Science
References
Abdul-Hussain, M. A., and Mohamad, H. J. (2021). "Thermal Effect in a 3-D Simulation within Multilayer Thin Film of Ultrafast-Pulsed Laser". Al-Mustansiriyah Journal of Science, 32(4), 104-109; : http://doi.org/10.23851/mjs.v32i4.1039
Abdul-Hussain, M. A., Mohamad, H. J., and Al-Haddad, A. (2022). "1-D Simulation of Ultrafast-Pulsed Laser into Nano-Sized Multilayered Structure (Ni81Fe19/Cu/YIG/GGG) for Memory Device Applications". Iraqi Journal of Science, 63(3), 1045-1054; https://doi.org/10.24996/ijs.2022.63.3.14
Ali, M. Z. (2021). "Plasmon-polariton gap and associated phenomenon of optical bistability in photonic hypercrystals". Physics Letters A, 387(n/a), 127026; https://doi.org/10.1016/j.physleta.2020.127026
Alias, R., Mahmoodian, R., and Abd Shukor, M. H. (2019). "Development and characterization of a multilayer silver/silver-tantalum oxide thin film coating on stainless steel for biomedical applications". International Journal of Adhesion and Adhesives, 92(n/a), 89-98; https://doi.org/10.1016/j.ijadhadh.2019.04.010
Anand, U., Chandel, A. K. S., Oleksak, P., Mishra, A., Krejcar, O., Raval, I. H., and Kuca, K. (2022). "Recent advances in the potential applications of luminescence-based, SPR-based, and carbon-based biosensors". Applied Microbiology and Biotechnology, 106(8), 2827-2853; https://doi.org/10.1007/s00253-022-11901-6
Balaur, E., Sadatnajafi, C., and Abbey, B. (2022); "Optical barcoding using polarisation sensitive plasmonic biosensors for the detection of self-assembled monolayers". Scientific Reports, 12(1), 13081; : https://doi.org/10.21203/rs.3.rs-1360592/v1
Bereli, N., Bakhshpour, M., Topçu, A. A., and Denizli, A. (2021). "Surface Plasmon Resonance-Based Immunosensor for Igm Detection with Gold Nanoparticles. Micromachines", 12(9), 1092; https://doi.org/10.3390/mi12091092
Berguiga, L., Ferrier, L., Jamois, C., Benyattou, T., Letartre, X., and Cueff, S. (2021). Ultimate phase sensitivity in surface plasmon resonance sensors by tuning critical coupling with phase change materials. Optics Express, 29(25), 42162-42175; https://doi.org/10.1364/OE.439869
Böer, K. W., and Pohl, U. W. (2018). "Interaction of Light with Solids". In K. W. Böer and U. W. Pohl (Reds.), Semiconductor Physics (pp. 333-388). Cham: Springer International Publishing. https://link.springer.com/referenceworkentry/10.1007/978-3-319-69150-3_10
Costa, E. B., Rodrigues, E. P., and Pereira, H. A. (2019). "Sim-SPR: an Open-Source Surface Plasmon Resonance Simulator for Academic and Industrial Purposes". Plasmonics, 14(6), 1699-1709, https://doi.org/10.1007/s11468-019-00970-5
Ding, Wen J., Lim, Jeremy Zhen J., Do Hue Thi Bich, Xiong Xiao, Mahfoud Zackaria, Png Ching Eng, Bosman Michel, Ang Lay Kee, and Wu Lin (2020). "Particle simulation of plasmons". Nanophotonics 9(10), 3303-3313; https://doi.org/10.1515/nanoph-2020-0067
Ding, Wen J., Lim, Jeremy Zhen J., Do Hue Thi Bich, Xiong Xiao, Mahfoud Zackaria, Png Ching Eng, Bosman Michel, Ang Lay Kee, and Wu Lin (2020). "Particle simulation of plasmons". Nanophotonics 9(10), 3303-3313; https://doi.org/10.1515/nanoph-2020-0067
Divya, J., Selvendran, S., Raja, A. S., and Sivasubramanian, A. (2022). "Surface plasmon based plasmonic sensors: A review on their past, present and future". Biosensors and Bioelectronics: X, 11(n/a), 100175; https://doi.org/10.1016/j.biosx.2022.100175
Duan, Q., Liu, Y., Chang, S., Chen, H., and Chen, J.H. (2021). "Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications". Sensors (Basel, Switzerland), 21(16), 5262; https://doi.org/10.3390/s21165262
Farah, J. K., Shaymaa, H. K., Asrar, A. S., Ali, A. D. Z., and Anwar, H. S. (2021). "Simulation of Surface Plasmon Resonance (SPR) of Silver with Titanium Oxide as a BiLayer Biosensor". The Scientific Journal of King Faisal University, 22(2), (n/a); https://doi.org/10.37575/b/sci/210046
Ferrari, J. L., Lima, K. d. O., and Gonçalves, R. R. (2021). "Refractive Indexes and Spectroscopic Properties to Design Er3+-Doped SiO2–Ta2O5 Films as Multifunctional Planar Waveguide Platforms for Optical Sensors and Amplifiers". ACS Omega, 6(13), 8784-8796; https://doi.org/10.1021/acsomega.0c05351
Harumi, A., Endo, K., and Suzuki, T. (2021). "Reflectionless metasurface with high refractive index in the terahertz waveband". Optics Express, 29(10), 14513-14524; https://doi.org/10.1364/OE.420827
Kumar, R., Pal, S., Pal, N., Mishra, V., and Prajapati, Y. K. (2021). "High-performance bimetallic surface plasmon resonance biochemical sensor using a black phosphorus–MXene hybrid structure". Applied Physics A, 127(n/a), 1-12; https://doi.org/10.1007/s00339-021-04408-w
Lee, H.T., Ji, G.S., Oh, J.Y., Seo, C.W., Kang, B.W., Kim, K.W., and Park, H.R. (2021). "Measuring Complex Refractive Indices of a Nanometer-Thick Superconducting Film Using Terahertz Time-Domain Spectroscopy with a 10 Femtoseconds Pulse Laser. Crystals, 11(6), 651; https://doi.org/10.3390/cryst11060651
Li, J., Han, D., Zeng, J., Deng, J., Hu, N., and Yang, J. (2020). "Multi-channel surface plasmon resonance biosensor using prism-based wavelength interrogation". Optics Express, 28(9), 14007-14017; https://doi.org/10.1364/OE.389226
Mishra, S. K., Verma, R. K., and Mishra, A. K. (2021). "Versatile Sensing Structure: GaP/Au/Graphene/Silicon". Photonics, 8(12), 547. https://doi.org/10.3390/photonics8120547
Mohamad, H. J., Shelford, L. R., Aziz, M., Al-Jarah, U. A. S., Al-Saigh, R., Valkass, R. A. J., and Hicken, R. J. (2017). "Thermally induced magnetization dynamics of optically excited YIGCuNi81Fe19 trilayers". Physical Review B, 96(13), 134431; https://doi.org/10.1103/PhysRevB.96.134431
Mulyanti, B., Nugroho, H. S., Wulandari, C., Rahmawati, Y., Hasanah, L., Hamidah, I., and Majlis, B. Y. (2022). "SPR-Based Sensor for the Early Detection or Monitoring of Kidney Problems". International Journal of Biomaterials, 2022(n/a), 9135172; https://doi.org/10.1155/2022/9135172
Pandaram, M., Santhanakumar, S., Veeran, R., Balasundaram, R. K., Jha, R., and Jaroszewicz, Z. (2022). "Platinum Layers Sandwiched Between Black Phosphorous and Graphene for Enhanced SPR Sensor Performance". Plasmonics, 17(1), 213-222; https://doi.org/10.1007/s11468-021-01507-5
Polyanskiy, M. N. (2022). Refractive index database. van https://refractiveindex.info
Prosposito, P., Burratti, L., and Venditti, I. (2020). "Silver Nanoparticles as Colorimetric Sensors for Water Pollutants". Chemosensors, 8(2), 26; https://doi.org/10.3390/chemosensors8020026
Sai, T., Saba, M., Dufresne, E. R., Steiner, U., and Wilts, B. D. (2020). "Designing refractive index fluids using the Kramers–Kronig relations". Faraday Discussions, 223(0), 136-144; 10.1039/D0FD00027B
Shpacovitch, V., and Hergenröder, R. (2020). "Surface Plasmon Resonance (SPR)-Based Biosensors as Instruments with High Versatility and Sensitivity". Sensors (Basel, Switzerland), 20(11), 3010; https://doi.org/10.3390/s20113010
Singh, G. P., and Sardana, N. (2022). "Smartphone-based Surface Plasmon Resonance Sensors: a Review". Plasmonics, 17 (n/a), 1869–1888; https://doi.org/10.1007/s11468-022-01672-1
Steglich, P., Giulia, L., and Andreas, M. (2022). "Surface Plasmon Resonance (SPR) Spectroscopy and Photonic Integrated Circuit (PIC) Biosensors: A Comparative Review". Sensors, 22(8). doi:10.3390/s22082901; https://doi.org/10.3390/s22082901
Uddin, S. M. A., Chowdhury, S. S., and Kabir, E. (2021). "Numerical Analysis of a Highly Sensitive Surface Plasmon Resonance Sensor for SARS-CoV-2 Detection". Plasmonics, 16(6), 2025-2037; https://doi.org/10.1007/s11468-021-01455-0
Wang, X., Deng, H., and Yuan, L. (2021). "Highly Sensitive Flexible Surface Plasmon Resonance Sensor Based on Side-Polishing Helical-Core Fiber: Theoretical Analysis and Experimental Demonstration". Advanced Photonics Research, 2(2), 2000054; https://doi.org/10.1002/adpr.202000054